
AD-A268 379USAISE C l1111lltl lll l ml
US Army Information Systems Engineering Command
Fort Huachuca, AZ 85613-5300

U.S. ARMY INSTITUTE FOR RESEARCH
IN MANAGEMENT INFORMATION,

COMMUNICATIONS, AND COMPUTER SCIENCES

SAMeDL:
Technical Report Appendix F -

User's Guide Part 2 -
ORACLE

DTIC
ASQB-GI-92-020 0UEC19
September 1992

t o

AHMICS 93-18872
115 O'Keefe Building I lI
Georgia Institute of Technology \NI
Atlanta, GA 30332-0800

SECURITY CLASSIFICATION OF THIS PAGE
Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188
Exp. Date: Jun 30, 1986

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED NONE
"2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONIAVAILABILITY OF REPORT

N/&
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A

NIA

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
I (it applicable)NI

6c. ADDRESS (City, State, and Zip Code) 7b. ADDRESS (City, State, and ZIP Code)

NIA
8b. NAME OF FUNDING/SPQNSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicable)

Software Technology Branch, ARL AMSRL-CI-CD

8c. ADDRESS (City, State, ad ZIP Code) 10. SOURCE OF FUNDING NUMBERS

115 O'Keefe Bldg. PROGRAM PROJECT I TASK IWORK UNIT
Georgia Institute of Technology ELEMENT NO. NO. NO. ACCESSION NO.
Atlanta. GA 30332-0800

11. TITLE (Include Security Classification)

SAMeDL: Technical Report Appendix F - User's Guide Part 2 - Oracle

12. PERSONAL AUTHOR(S)
MS. Deb Waterman

13a. TYPE OF REPORT 13b. TIME COVERED 114. DATE OF REPORT (Year, Month, Oay, 15. PAGE COUNT

Technical Paper FROM Apr 91 TO Sept 92 Sept 15, 1992 50
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and Identify by block number)

FIELD GROUP SUBGROUP Ada Database Access, SAMeDL, Ada extension mod-
ule, SQL

19. ABSTRACT (Continue on reverse if necessary and Identify by block number)

This report details the research efforts into the SQL Ada Module Data-
base Description Language (SAMeDL). Four compilers are presented
(Oracle, Informix, XDB, and Sybase) that allow Ada application programs
to access database using a standard SQL query language. Copies of the
compiler can be obtained from the DoD Ada Joint Program Office
703/614-0209.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

E] UNCLASSIFIED/UNLIMITED- SAME AS RPT. [] DTIC USERS UNCLASSIFIED
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code 22c. OFFICE SYMBOL

LTC David S. Stevens (404) 894-3110 AMSRL-CI-CD

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted.
AN other editions are obsolete. ECURITY CLASIFICATIbN T

This research was performed by Statistica Inc., contract number DAKF11-91-
C-0035, for the Army Institute for Research in Management Information,
Communications, and Computer Sciences (AIRMICS), the RDTE organization of
the U. S. Army Information Systems Engineering Command (USAISEC). This final
report discusses a set of SAMeDL compilers and work enviornment that were devel-
oped during the contract. Request for copies of the compiler can be obtained from
the DoD Ada Joint Program Office, 703/614/0209. This research report is not to
construed as an official Army or DoD Position, unless so designated by other
authorized documents. Material included herein is approved for public release,
distribution unlimited. Not protected by copyright laws.

THIS REPORT HAS BEEN REVIEWED AND IS APPROVED

,4L-, sear2ŽQAA
Glenn E. Racine, Chief ames D. Gantt, Ph.D.
Computer and Information Director
Systems Division AIRMICS

Aoeeslon Tl For

DTIC TAB 0
Unannounced'ous !at ion

DTIC QttI ff I n SPECTE3 Bym -

Dist.ributl.le/

AvajlsbilltY 6 04SX

"A vail and/or
Dist SpeoilB

SAMeDL Development Environment

User Manual

(Oracle/386PClInteractive UNIX/Alsys)

Intermetrics, Inc.

Document IR-VA-028-1
Date 0 1-September- 1992

Published by
Intermetrics, Inc.

733 Concord Avenue, Cambridge, Massachusetts 02138

Copyright (c) 1992 by Intermetrics, Inc.

This material may be reproduced by or for the U.S. Government pursuant to the copyright license
under the clause at DFARS 252.227-7013 (Oct. 1988).

Table Of Contents
Chapter I About This M . . 1

1.1 Purpose ... 1
1.2 O rganization .. 1
1.3 Syntax Conventions ... 2
1.4 References .. 2

Chapter 2 SDE Overview--
2.1 The SDE SAMeDL Compiler ... 5
2.2 The SDE Module Manager ... 6

Chapter 3 SDE Library File System 7
3.1 Overview Of SDE Libraries ... 7
3.2 Core Library Files .. 8
3.3 Modules and Interface Files .. 10
3.4 Miscellaneous Temporary Files .. 10
3.5 Standard SAMeDL Modules and Ada Support Packages 11

Chapter 4 Getting Started With SDE --- 13
4.1 Creating A Database ... 13
4.2 Creating An SDE Library ... 13
4.3 Compiling A SAMeDL Source File .. 14
4.4 Creating An Ada Application Program ... 16

Chapter 5 Building Ada/SQL Interfaces With SAMeDL 23
5.1 Overview Of The SAMeDL Compiler ... 23
5.2 SAMeDL Compiler Invocation ... 23
5.3 Using the Compiler-Generated Interface 24
5.4 Compiler Directives ... 26

5.4.1 Reference Directive .. 26
5.4.2 Owner Directive ... 27

Chapter 6 Implementation Dependent Features.. .. 29
6.1 SAMeDL Language Limitations Under Oracle 29
6.2 SAMeDL Extensions For Oracle ... 29
6.3 Troubleshooting Common System Errors 30

Chapter 7 Tool Limitations ..- 31
7.1 SAMeDL Compiler Limitations .. 31
7.2 SDE Module Manager Limitations ... 31

Chapter 8 SDE Command Reference Manual Pages 33
8.1 samedl.. 34
8.2 sde.cleanlib.....................................36
8.3 sde.creatar ... 37
8.4 sde.creatlib ... 38
8.5 sde.Is ... 39
8.6 sde.m kscript ... 41
8.7 sde.purge .. 43
8.8 sde.rm .. 44
8.9 sde.rmlib ... 45

Index 47

Chapter I - About This Manual

Chapter 1 About This Manual

1.1 Purpose

The purpose of this manual is to describe the features of the Intermetrics' SAMeDL Development
Environment (SDE) for the Oracle Database Management System on the 386PC platform with
Interactive UNIX and Alsys Ada. The language supported is defined in the SAMeDL Language
Reference Manual [LRM]. This user's manual is not intended to be a language tutorial for
SAMeDL. In addition, it is assumed that you have an underlying working knowledge of Oracle
[Oracle] and the Ada standard [Ada].

1.2 Organization

The organization of this document is as follows:

"• Chapter 2, SDE Overview, briefly describes the SDE components, what each
component is used for, and how the components relate to each other.

"• Chapter 3, SDE Library File System, contains an overview of libraries and how SDE
uses them.

"* Chapter 4, Getting Started With SDE, demonstrates a simple scenario, providing
enough information for users to get started developing Ada/SQL interfaces with
SAMeDL.

" Chapter 5, Building AdalSQL Interfaces With SAMeDL, provides detailed information
on how to generate Ada/SQL interfaces using the SAMeDL compiler, and also outlines
the procedures that should be followed for including generated interfaces in an Ada
application program.

"* Chapter 6, Implementation Dependent Features, discusses SAMeDL features which are
dependent on the Oracle DBMS implementation.

"* Chapter 7, Tool Limitations, outlines general restrictions and tool limitations imposed
by the current release of the SAMeDL Development Environment for
Oracle/386PC/Interactive UNIX/Alsys.

* Chapter 8, SDE Command Reference Manual Pages, contains a detailed reference for
each command in SDE.

Intermetrics, Inc.

SAMeDL Development Environment - User Manual

1.3 Syntax Conventions

The following explains the notational conventions used in SDE command syntax throughout this
document:

xyz Items expressed in lower-case italic letters are used to represent user-
supplied names. You should substitute an appropriate value. For example,

pathname

would mean that you should specify the text that represents a file or
directory pathname.

[] Brackets are used to denote items that are optional. For example,

sde.cleanlib (pathname]

means that you may specify the command with or without supplying a
pathname.

An ellipsis indicates that you may optionally repeat the preceding item one
or more times. For example,

module_name ...

means that a series of module names can follow the one listed.

Unless otherwise noted, you may specify options on a SDE command in any order. Also, option
keywords are not case sensitive and may be truncated as iong as the resulting abbreviation is
unambiguous. For example, the following two commands are equivalent:

sde.ls -1 my-library -v my_.defmodule
sde.ls -Verbose -Library my-library my-def_module

1.4 References

[Ada] Reference Manual for the Ada Programming Language, Ada Joint Program
Office, 1983.

[AdaRef] FirstAda Ada Software Engineering Environment: Application Developer's
Guide and Appendix F version 4.4, Alsys, Inc, 1990.

[LRMI SAMeDL Language Reference Manual, Intermetrics, Inc., IR-VA-01 1-1, 07
July 1992.

[Oracle] ORACLE RDBMS Database Administrator's Guide, Oracle Corporation,
October 1990. Part No. 3601 -V6.0.

2 tntermeirics, Inc.

Chapter I - About This Manual

[OraESQL] Programmer's Guide to the ORACLE Precompilers, Oracle Corporation,
September 1991. Part No. 5315-V1.3.

[SAMEGuide] Guidelines for the Use of the SAME, Marc Graham: Software
Engineering Institute/Carnegie Mellon University, Technical Report CMU/SEI-89-TR-
16, May 1989.

[SDEInst] SAMeDL Development Environment Installation Guide, Intermetrics, Inc.,
IR-VA-026-2, 01 September 1992.

Intermetrics, Inc. 3

Chapter 2 - SDE Overview

Chapter 2 SDE Overview

The SAMeDL D- clopment Environment (SDE) provides you with a software environment for
developing Ada/SQL interfaces through the use of SAMeDL. The SDE toolset consists of a
compiler, which processes SAMeDL source files to generate Ada/SQL interfaces, and the
Moduie Manager, which assists you with SDE library management and other facets of interface
deelopment.

The SDE toolset includes the following:

samedl invoke the SAMeDL compiler
sde.cleanlib reinitialize an SDE library
sde.creatar create a.library archive file for compiled concrete modules
sde.creatlib create an SDE library
sde.Is list compiled SAMeDL modules
sde.mkscript generate an Ada compilation script file for an interface file
sde.purge remove out of date files from an SDE library
sde.rm remove a SAMeDL module from an SDE library
sde.rmlib remove an SDE library

2.1 The SDE SAMeDL Compiler

The SAMeDL compiler processes SAMeDL source files and generates interface files
representing the prescribed Ada/SQL interface.

Like an Ada compiler which deals with compilation units, the SAMeDL compiler works with
modules, which are the smallest pieces of code that can be successfully compiled and shared. A
SAMeDL source file may consist of one or more modules.

In SAMeDL, there are three types of modules. A module may be either a definitional module
containing shared definitions, a schema module containing table, view, and privilege definitions,
or an abstract module containing local definitions and procedure/cursor declarations.

The SAMeDL compiler will generate interface files for each definition module (in the form of an
Ada package specification/body pair) and each abstract module (in the form of a layered
interface consisting of an Ada package specification/body pair and an object code file generated
from a C with embedded SQL file). No interface files are generated for schema modules. The
generated interface files collectively represent the Ada/SQL interface you would use in your Ada
application program.

SAMeDL is analogous to Ada in that it also has the concept of separate compilation. SAMeDL
modules may use (through the use of context clauses) information contained in other modules
that you have previously compiled. All separate compilation information is kept in ordinary host
file system directories and files. These files/directories along with any generated interface files
are organized into an SDE library, which again is somewhat similar to the development library
concept used by most Ada development systems.

As in the case of most language compilers, the SAMeDL compiler will perform the appropriate
syntactic and semantic error checking. All error messages are reported to the standard output
device. You may also optionally specify that a source listing file be generated in which case, if
you had any errors, the errors would be interleaved with the SAMeDL source code in your
listing.

Intermetrics, Inc. 5

SAMeDL Development Environment - User Manual

2.2 The SDE Module Manager

The SDE Module Manager is a set of tools which you may use to assist with SDE library
management and other facets of interface development. These tools include sde.cleanlib,
sde.creatar, sde.creatlib, sde.ls, sde.mkscript, sde.purge, sde.rm, and sde.rmlib.

sde.cleanlib

sde.cleanlib will allow you to empty an existing SDE library of all compilation information.
The command will re-initialize the names.dbe and samedl.dat files and remove the remaining
contents of the samedl.lib subdirectory.

sde.creatar

sdercreatar is useful for creating and updating a library archive file that contains the object code
files gertiated from the C with embedded SQL for abstract modules. The object code files can
then more easily be included as part of the Ada link step for the application program (as opposed
to specifying each of the object code files individually in the link step).

sde.creatlib

sde.creatlib is used to create and initialize a new SDE library. It creates a directory named
samedl.lib in the library directory, and creates the files samedl.dat and names.dbe in the
samedl.lib directory.

sde.ls

sde.Is provides you with a list of the SAMeDL modules compiled in an SDE library. Useful is
the interface option which will provide information concerning the interface files generated for a
module.

sde.mkscript

sde.mkscript will create a template for performing the Ada compilation of the generated Ada
interface files (and the units they depend on) for the definitional or abstract modules.

sde.purge

sde.purge will remove all out of date/unused files from an SDE library. These files include
temporary files (e.g., those used during compilation) or interface files that have been put out of
date due to recompilation of the associated SAMeDL modules. In addition, sde.purge will also
remove the library state information backup file samedl.dat.back.

sde.rm

sde.rm allows you to remove all information and related interface files associated with modules
compiled in the SDE library.

sde.rmlib

You use sde.rmlib to remove an SDE library and all of the information it contains.

6 Intermetrics, Inc.

Chapter 3 - SDE Library File System

Chapter 3 SDE Library File System

This chapter contains an overview of SDE libraries and the files that comprise them.

3.1 Overview Of SDE Libraries

An SDE library is a host file system directory which acts as a central database of SAMeDL
compilation information and related generated interfaces.

SDE L ibrary Contents

sum mdl .1lb

names.dbe smda

I

F sie fliles afle

I I
.ecfiles -afIe

I n-l° I/-

/ \

-Cfiesznnfels

Figure 3.1: Contents of an SDE Library

Every directory representing an SDE library will contain the directory samedl.lib. samedl.lib in
turn contains the files names.dbe, samedl.dat, and samedl.daLback, and various files ending
with .sme, .ec, .o, and .a extensions. In addition, there are a variety of temporary files that may
appear under samedl.lib: samedl.lock, samedl.tmp, and files ending with .c and .com
extensions.

Note: in general, it is not advisable for you to modify or place any files in the directory
samedl.lib that are not otherwise generated by SDE. In particular, sde.rmlib and sde.cleanlib
do the equivalent of a UNIX "rm -r samedl.lib" as part of their operation.

Intermetrics, Inc. 7

SAMeDL Development Environment - User Manual

3.2 Core Library Files

When you initially create a new SDE library (via sde.creatlib) or "clean" an existing SDE library
(via sde.cleanlib), the directory samedl.lib will only contain the following core library files:
samedl.dat and names.dbe. In certain circumstances, a backup file for samedl.dat named
samedl.dat.back will also be present.

samedl.dat

samedl.dat is the net disk data file for the library. It contains a series of records, each record
containing the data for a single node in the internal representation of the dependency tree. The
information in the file is in text format, that can be read/written by the SDE module manager and
the SAMeDL compiler.

The internal representation of the dependency information is tree-like. Each node in the tree
represents a file in the SAMeDL system, and has information about all nodes that are dependent
on it and nodes that it depends on (called CaredAboutBy and CaresAbout arcs respectively).
Each node also contains the time it was created, the external source file it was created from, the
name of the source file saved in the library and the name of the library file that the generated
code resides in.

Nodes are given node numbers that uniquely identify them. This practice facilitates saving the
tree to the designated disk file and reading it back because pointers do not need to be included in
the disk file. It also facilitates the use of uniform data structures for the internal representation
because variable length records do not need to be used. Instead, lists are maintained off each
node that contain the node numbers of the nodes that the node depends upon, or is depended
upon by.

The records in the disk data have the following fields:

Node Number number of the node that specifies the unit

Node Type the type of file this node points to

Unit Name name of the compiled unit

Time Entered time the unit was entered into the library

Library Fihe name of file saved in library

External File pathname of file that the node was generated from

Cares About Arc Num number of cares about arcs from this node

Cares About Arc List list ot t•..,es about arcs from this node

Cared About By Arc Num number of care about arcs to this node

Cared About By Arc List list of care about arcs to this node

The records in the disk data file are written out in text form, one after the other with a special
character separating each node.

8 Intermetrics, Inc.

Chapter 3 - SDE Library File System

samedl.dat.back

The samedl.dat.back file is a backup copy of the samedl.dat file that the SAMeDL compiler
and the sde.rm command make before they change the samedl.dat file. samedidaLback will
contain the prior library state information and thus will allow you to undo the effects of the last
samedl or sde.rm command (provided that a sde.purge command has not been since executed;
see below). In order to restore the library back to its prior state, you should go to the samedl.lib
directory corresponding to your SDE library, remove the existing samedl.dat file, and rename
(using the UNIX my command for.example) samedl.dat.back to samedldat. Note that because
of the semantics of the sde.purge command, an SDE library may not be restored if the library
has been purged.

names.dbe

The names.dbe file is a text file that maintains two integer counters used internally by the
compiler to keep track of procedures and variables across separate compilations.

Intermetrics, In;. 9

Chapter 4 - Getting Started With SDE

Chapter 4 Getting Started With SDE
This chapter presents some basic scenarios for using the SAMeDL Development Environment:
creating an SDE library, compiling a SAMeDL source file, and creating an Ada application
program which uses the SAMeDL compiler generated modules to interface with the database
environment. The scenarios have. intentionally been kept simple; details are deferred to later
sections of this manual.

Suppose you want to design an Ada application program which interacts with a database
environment. The basic steps are:

1. Create the Oracle Database that the application will access, if it does not already exist.

2. Create an SDE library for the database.

3. Prepare a SAMeDL source input file and compile it into the SDE library.

4. Write the Ada application program which uses the SAMeDL standard packages and the
Ada definition/abstract modules generated by the SAMeDL compiler.

5. Compile and link the Ada application program.

4.1 Creating A Database

The initial creation and maintenance of a Oracle database is beyond the scope of SAMeDL. As
described in the Oracle system administration manual [Oracle], the Database Administrator will
create and maintain databases through the use of Oracle DBMS commands. Typical tasks would
include:

"* Create a Database

"* Create the Database files(tables) and fields(columns) for the Database.

" Assign the appropriate permissions to the database to allow application connection
through the Oracle HLI. This step includes adding login ids and users as necessary to
the database via database administrator procedures.

" Set any default values and/or integrity constraints on table fields.

4.2 Creating An SDE Library

Once an appropriate database exists, you need to create an SDE library before you can compile
SAMeDL source code. The SDE library will be used by the SAMeDL compiler to store
information necessary for separate compilation and also to act as a repository for the interface
files that are generated.

You create a new SDE library with the sde.creatlib command. This command optionally takes
one argument which is the directory name for the library; if you do not specify an argument, then
the library will be generated in your current working directory.

For example, to create an SDE libiary in the directory /usr/same/example/samelib, you would
issue the following command:

Intermetrics, Inc. 13

SAMeDL Development Environment - User Manual

%sde.creatlib /usr/same/example/samelib

In order to create the library, it is important that you have have appropriate read/write privileges

for the library directory.

4.3 Compiling A SAMeDL Source File

The next step is to prepare a SAMeDL source file (with the text editor of your choice) and
compile it into the SDE Library.

Before you can use the compiler however, you must properly set the environment variable
ORACLE HOME to contain the path name to the Oracle RDBMS installation directory (e.g.,
/usr/oracl).

Consider the following description which is assumed to be in the file bank.sme. This example.
contains three modules: the definition .module samplemod, the schema module recdb, and the
abstract module recdml. Furthermore, the example depends on the definition module
samedistandard which must have been previously compiled into your SAMeDL library.

-- !reference samedlstandard
with samedlstandard; use samedl_standard;
definition module SampleMod is

-- Member Information
domain Member_Name is new SQL_CHAR Not Null (LENGTH => 30);
domain SSN is new SQL_CHAR Not Null (LENGTH => 9);
domain Age is new SQL_SMALLINT (FIRST => 1, LAST => 199.0);

enumeration SexEnum is (F, M);
domain Sex is new SQL_ENUMERATIONAS_CHAR

ENUMERATION => SexEnum,
WIDTH => 1,
MAP =>(m=>'B', f=>'A'));

domain Phone is new SQL_CHAR (LENGTH => 8);
domain Street is new SQLSCHAR (LENGTH => 30);
domain City is new SQLtHAR (LENGTH => 15);

domain County is new SQL_CHAR Not Null (LENGTH => 2);

domain Club_Number is new SQL_SMALLINT Not Null;

exception RecordNot_Found;

enumeration FailType is (NotLoggedIn, SQLOk, SQLFail);

status fetchmap named is_found uses Failtype is
-999 .. -300 => SQL._Fail,

-299, -298 => NotLogged-In,
0 => SQLOk,

100 => raise samplemod.recordnot_found);

end SampleMod;

14 Intermetrics, Inc.

Chapter 4 -Getting Started With SDE

with SampleMod; use SampleMod;
schema module RecDB is

table Members is
MemberName not null :Member_Name,
MemberSSN not null :SSN,
ClubNumber not 'null :Club_-Number,
MemberAge :Age,
MemberSex :Sex,
MemberPhone :Phone,
MemberStreet :Street,
MemberCity :City,
MemberCnty not null :County

end Members;

end RecDB;

with SampleMod; use SampleMod;
extended abstract module RecDML is

author izat ion RecDB

record MemberRec is
MemberName :MemberName;
MemberSSN :SSN;
ClubNumber :ClubNumber;
MemberAge :Age;
MemberSex :Sex;
MemberPhone :Phone;
MemberStreet :Street;
MemberCity :City;
MemberCnty :County;

end;

procedure CommitWork is
commit work;

extended procedure connect..oracle-server is
connect server 'test' *test';

procedure MemberInsert is
insert into RecDB.Members
from Row :MemberRec VALUES;

cursor MemberSelect (Req-MemberSSN SSN) for
select MemberName,

MemberSSN,
ClubNumber,
MemberAge,
MemberSex,
Member Phone,
MemberStreet,
MemberCity,
MemberCnty

from RecDB.Members
where RecDB.Members.Memb~erSSN =RecLMemberSSN;

is

Intermetrics, Inc. Is

SAMeDL Development Environment - User Manual

procedure FetchIt is
fetch into Row : MemberRec

status Fetch-Map named RecStatus;

end MemberSelect;

end RecDML;

The SAMeDL compiler is invoked with the command samedl. For example, to compile
bank.sme into the SDE library created above, you should issue the following command:

%samedl -library /usr/same/example/samelib bank.sme

The -library qualifier is used to specify the name of an existing SDE library; this is optional, and
if not given, the library will be assumed to exist in your current working directory. You must
give the host filename of the SAMeDL input source file; this filename must end with the
characters .sme. For more information zn invoking the SAMeDL compiler, refer to Chapter 5 of
this manual.

The SAMeDL compiler will generate interface files for each definition module (an Ada package
specification/body pair) and each abstract module (an Ada package specification/body pair, a C
with embedded SQL file, and an object code file). No interface files are generated for schema
modules. All interface files will be placed in the samedl.lib directory contained within the
library directory. Thus, for the sample compiler invocation above, you can find all interface files
in the directory /usr/same/example/samelib/samedl.lib.
To determine what the names of the generated interface files for the modules samplemod and
recdb, you can use the sde.ls command. For example:

%sde.ls -1 /usr/same/example/samelib -i samplemod recdml

samplemod
Interface Files:

/usr/same/example/samelib/samedl.lib/P_2_.a (ADASPEC)
/usr/same/example/samelib/samedl. lib/B_2 .a (ADABODY)

recdml
Interface Files:

/usr/same/example/samelib/samedl.lib/P_.3_.a (ADASPEC)
/usr/same/example/samelib/samedl.lib/B_3 .a (ADABODY)
/usr/same/example/samelib/samedl.lib/E_l.ec (EMBEDDEDC)
/usr/same/example/samelib/samedl. lib/E_1.o (OBJECTFILE)

For more information concerning the naming conventions used for SDE library files, see Section
3.3 of this document.

4.4 Creating An Ada Application Program

The Ada files produced by the SAMeDL compiler along with the SAMeDL standard packages
provide an abstract Ada interface to the database which may be utilized by an Ada application
program. So before you can build your application, you first need to compile these files into an
appropriate Ada library that will be visible to yo ur Ada application development library.

16 Intermetrics, Inc.

Chapter 4 - Getting Started With SDE

The SAMeDL standard packages are provided as part of SDE. To determine the location of
these files at your site, please refer to the SDE installation notes or ask your system
administrator.

To generate an "invoke" command file for compiling the Ada interface files contained in your
SAMeDL library into your Ada library, you may use the sde.mkscript command. For example:

%sde.mkscript -1 /usr/same/example/samelib -o myscript samplemod recdml
%more my-script
Compile (Source => •/usr/same/example/samelib/samedl.lib/P_l_.a*);
Compile (Source => •/usr/same/example/samelib/samedl.lib/Bl.a");
Compile (Source => '/usr/same/example/samelib/samedl.lib/P_2_.a");
Compile (Source => "/usr/same/example/samelib/samedl.lib/B_2.an);
Compile (Source => M/usr/same/example/samelib/samedl.lib/P_3_.al);
Compile (Source => °/usr/same/example/samelib/samedl.lib/B_3.a");

In this example, the sde.mkscript command indicates that 3 sets of Ada package spec/body pairs
need to be compiled, even though the initial compilation of the file containing samplemod and
recdml generated only 2 Ada packages spec/body pairs. The reason for this discrepancy is that
the definitional module samplemod references the previously-compiled module
samedl standard, which contains the definitions of the base domains SQL,_CHAR, SQLJNT,
etc. Thie reference to samedl standard is achieved via a reference directive. For more
information on compiler directives, see Section 5.4 of this manual.

To generate a C-language archive including all of the C object files pertinent to your Ada
application you may use the sde.creatar command. For example:

%sde.creatar crecdml.a recdml

The command given above will create a C-language archive named c recdml.a which contains
the C object code necessary to lin the Ada-Oracle interface generatedby the SAMeDL abstract
module recdml to an Ada application, such as the one presented below.

Using the bank example presented above, suppose that you need a utility that will allow bank
tellers access to profile information for a customer. You could accomplish this with the
following Ada program:

with TEXT_IO;
use TEXT_IO;
with SAMPLEMOD;
with RECDML;
procedure MAIN is

-- User I/O information
IN_BUFFER : STRING(l .. 80);
LAST : NATURAL;
OPT : INTEGER;

-- Members Row Record
ROW : RECDML. MEMBERREC;
IROW : RECDML.MEMBERREC;

procedure DOINSERT is
begin

PUTLINE(-*** Function to Insert rows ***);
NEW_LINE;

Intermetrics, Inc. 17

SA~eDL Development Environment - User Manual

loop
IN-.BUFFER :=(others =>
PUT("Enter Member SSN (9 char max) or -1 for MENU> 0);
GET-.LINE (IN-BUFFER, LAST);
NEWLINE;
exit when (INBUFFER(1 . LAST) = 'l)

IROW .MEMBERSSN := SAMPLEMOD.SSN..NOTNULL (NBUFFERl (1 9));

IN-BUFFER :=(others => 1 1);
PUT(wEnter Member Name (30 char max)> 0);
GETLINEU(IIBUFFER, LAST);
NEWLINE;
IROW.MEMBERNA ME-
SAMPLEMOD .MEMBER_NAME_NOT_NULL (INBUFFER (1 -30));

IN-..BUFFER :=(others => - 1;
PUT(*Enter Club Number (Smallint)> i)

GET-LINE (IN-BUFFER, LAST);
NEW-LINE;
IROW.CLUBNUMEER
SAMPLEMOD.CLUBý_NUMBER_NOT_NULL' VALUE(

INBUFFER(1 . LAST));

IN-BUFFER :=(others => I 1;
PUT(Enter Member Age (Smallint) or \\ for NULL> 0);
GETLINE (N-..BUFF2ER, LAST);
NEWLINE;
if (INBUFFER(1 . 2) =\)then

SAMPLEMOD.AGEý_OPS.ASSIGN(IROW.MEMBERAGE,
SAMPLEMOD.NULL_.SQLSMALLINT);

else
SAMPLEMOD.AGE_OPS .ASSIGN(IROW.MEMBERAGE,

SAMPLEMOD. AGE_OPS.WITH NULL(
SAMPLEMOD. AGE_NOT_NULL' VALUE(

IN....BUFFER(1 . LAST)));
end if;

INBUFFER := (others => '1

PUT(OEnter Member Sex (M/F) or \\ for NULL>)
GETLINE(IN-BUFFER, LAST);
NEW_LINE;
if (IN_-BUFFER(1 . 2) =\)then

SAMPLEMOD..ASSIGN (IROW.MEMBERSEX,
SAMPLEI4OD.NULLSQLENUMERATION);

else
SAMPLEMOD.ASSIGN (IROW .MEMBERSEX,
SAMPLEMOD .WITHNULL(
SAMPLEMOD.SEXNOTNULL *VALUE(

IN.-EUFFER~l .. LAST))));
end if;

INBUFFER :=(others => 1)
PUT(*Enter Member Phone (8 chars) or \\ for NULL>)
GETLINE(IN -BUFFER, LAST);
NEWLINE;
if (INBUFFER(1 .. 2) =\)then

18 Intermetrics, Inc.

Chapter 4 - Getting Started With SDE

SAMPLEMOD.ASSIGN (IROW.MEMBERPHONE,
SANPLEMOD.NULL...SQL.CHAR);

else
SAMPLEMOD.ASSIGN(CIROW.MEMBERPHONE,

SAMPLEMOD. PHONEOPS.WITHNULL(
SAMPLI24OD.PHONE_NOT NULL(INBUFFER(1 . 8)));

end if;

INý_BUFFER (others =>
PUT(OEnter Member Street (30 char max) or \\for NULL>)
GET-LINE (INBUFFER, LAST);
NEWLINE;
if (IN-..BUFFER(1 . 2) = 0\') then

SAMPLEMOD.ASSIGN(CIROW . 1EBERSTREET,
SAMPLEMOD.NULL-..SQLSCHAR);

else
SAMPLEMOD.ASS IGN (IROW MEMERSTREET,

SAMPLE14OD. STREETOPS.WITHNULL(
SAMPLE4OD.STREETNOTNULL(IN-..BUFFER(1 30))));

end if;

IN-BUFFER :=(others =>
PUT(4Enter Member City (15 char max) or \\for NULL> 1);
GET...LINE(CINBUFFER, LAST);
NEWLINE;
if (IN-.BUFFER(1 . 2) = "\\m) then

SAMPLEMOD.ASSIGN (IROW .MEMBERCITY,
SAMPLEMOD.NULL...SQLCHAR);

else
SAMPLEMOD .ASSIGN(CIROW.MEMBERCITY,
SAMPIJEMOD.CITYOPS.WITHNULL(

SAMPLEMOD.CITYNOT-.NULL(INý_BUFFER(1 . 15)));
end if;

INBUFFER := (others =>
PUT(*Enter Member Cnty (2 char max)> m);
GETý_LINE (IN...BUFFER, LAST);
NEW-LINE;
IROW.MEMBERCNTY
SAMPLEMOD.COUNTY_ýNOT_NULL(IN..BUFFER(1 . 2));

RECDML .MEMBERINSERT (IROW);
RECDML .COMMITWORK;

end loop;

exception
when others =>

PUTLINE(O*** Error: could not do Insert **)

end DO_INSERT;

procedure DO_SELECT is
STATUS : SAMPLEMOD.FAILTYPE;

begin
PUTLINE(*** Function to Select rows **)

NEWLINE;
loop

INBUFFER :=(others =>
PUT("Enter Member SSN (9) or -1 for MENU> 1);

Intermetrics, Inc. 19

SAMeDL Development Environment.- User Manual

GETLINE (IN=BUFFER, LAST);
NEW_LINE;
exit when (IN...BUFFER(l .. LAST) ="I)
.RECDML.MEMBERSELECT.OPEN (SAMPLEMOD.SSNý_NOT_NULL(

INBUFFER(1 . 9));

begin
loop

RECDML .MEMBERSELECT. FETCHIT (ROW, STATUS);

PUT_-LINE("NAME: " & STRING(ROW.MEMBERNAME)&
'SSN: -& STRING(ROW.M~EMERSSN)&&
'CLUB: "&
SAMPLEIOD. CLUENUMBERNOT_NULL IMAGE(

ROW.CLUENUMBER))

PUT(*AGE: ");I
if not. (SAMPLEMOD.IS_NULL(ROW.MEMEERAGE)) then

PUT (SAMPLEMOD.AGENOTNULL *IMAGE(
SAMPLEMOD.AGEOPS.WITHOUT-NULL(

ROW.MEMBERAGE));
end if;
SETCOL(13);

PUT(*SEX:)
if not (SAMPLEMOD.IS_NULL(ROW.MD4BERSEX)) then

PUT (SA2,PLEMOD. SEXNOTNULL *IMAGE(
SAMPLEMOD.WITHOUTNULL(ROW.MEMBERSEX)));

end if;
NEWLINE;

PUT(*PHONE:U)
if not (SAMPLEMOD.ISNULL(ROW.MEMEERPHONE)) then

PUT (STRING (SAMPLEMOD. PHONE_OPS.WITHOUT_-NULL(
ROW.MEMBERPHONE));

end if;
NEW_-LINE;

PUT("STREET:U)
if not (SAMPLEMOD.IS_NUJLL(ROW.MEMBERSTREET)) then

PUT (STRING (SAMPLEMOD. STREET_-OPS .WITHOUTNULL(
ROW.MEMBERSTREET));

end if;
NEW_-LINE;

PUT("CITY:U)
if not (SAMPLEMOD.IS_NULL(ROW.MEMEERCITY)) then

PUT (STRING (SAMPLEMOD .C ITY_OPS .WITHOUTNULL(
ROW.MEMEERCITY));

end if;
SETCOL(26);

PUTLINE("COUNTY: " & STRING(ROW.MEMBERCNTY));
NEW_-LINE;

NEW_-LINE;
end loop;

20 Jntermetrics, Inc.

Chapter 4 - Getting Started With SDE

exception
when others =>

PUTLINE(CNo more records found!);
NEWLINE;

end;

RECDML. ME4BERSELECT. CLOSE;
RECDML. COMMITNORK;

end loop;

exception
when others => -- Couldn't find request

PUT_LINE(*** Error: could not do Select ***U);

end DOSELECT;

begin
RECDML. CONNECT_ORACLE_SERVER;
loop

PUTLINE('*** Option Menu ***);
PUT_LINE(" 0 - Quito);
PUTLINE(" 1 - Insert•);
PUTLINE(" 2 - Select*);
PUT("Option? > U);

GET_LINE(IN_BUFFER, LAST);
NEW_LINE;
OPT := INTEGER'VALUE(INBUFFER(1. LAST));

case OPT is
when 0 =>

exit;
when 1 =>

DOINSERT;
when 2 =>

DOSELECT;
when others =>

PUT_LINE(Illegal Choice: & IN_BUFFER(. LAST));
end case;
NEWLINE(2);

end loop;
end MAIN;

Assuming that your Alsys Ada development library is in /usr/samelexample/adalib and that the
above Ada program is in the file getprof.a, you can compile and link the program by performing
the following steps, which use the file myscript and the archive file c recdmla described earlier
in this section:

" Compile the SAMeDL Standard Packages into your Ada library (this step may be
omitted if visibility to the SAMeDL Standard Packages has been gained in another
way).

%$SDEPATH/comp-st dpkgs /usr/same/example/adalib

"* Compile the code generated by the SAMeDL compiler into your library, using the
script generated by the sde.mkscript command.

Intermetrics, Inc. 21

SAMeDL Development Environment - User Manual

%ada
"> default compile (library=>/usr/same/example/adalib)
"> invoke (file=>myscript)
"> quit

" Compile your application into the Ada library.

%ada
> default compile (library=>/usr/same/example/adalib)
> compile (source=>getprof.ada)
> quit

" Generate the executable using the Alsys BIND command. When issuing the BIND
command, include the following arguments in addition to providing values for the
required PROGRAM and LIBRARY parameters [AdaRef]:

(a) MODULES => $ORACLE HOME/rdbms/Iib/osntab.o

(b) SEARCH => the archive file generated by the call to sde.creatar (for this
example, c recdmla),
$ORACLE HOMErdbnas/ib/libsqlnet.a,
$ORACLE-HOME/rdbnms/ib/libsql.a,
$ORACLEHOME/rdbms/lib/iibora.a

* The order of arguments for the MODULES parameter is not significant, but the order of
arguments for the SEARCH parameter is significant. If your application program
requires additional external modules, you may have to reorder the list of external
modules before all references can be adequately resolved. Consult the Alsys Ada
User's Manual for further information.

In the example above, the Unix C-shell (csh) script comp std.pkgs provided with SDE contains
Alsys Ada Compiler commands and is described in Section 5.3 of this document (SDEPATH is
an environment variable which has been set to the path name for the SDE installation directory).

22 Intermetrics, Inc.

Chapter 5 - Building Ada/SQL Interfaces With SAMeDL

Chapter 5 Building Ada/SQL Interfaces With SAMeDL

5.1 Overview Of The SAMeDL Compiler

The SAMeDL compiler is used to generate interface files representing an Ada/SQL interface for
your Ada applications. These interface files consist of one or more files containing Ada
packages representing the Ada interface:

"* Each definition module defined in the source input will have an Ada package
specification and a corresponding Ada package body generated.

"• Each abstract module defined in the source input will have an Ada package
specification and a corresponding Ada package body generated.

In addition, for each abstract module a corresponding concrete module will be generated. This
file takes the form of C code with embedded Oracle SQL statements. Procedures declared within
the file are called by procedures within the abstract module's Ada package body in order that
direct interaction with the database can be handled. Each such file will be preprocessed by the
Oracle SQL C preprocessor and the resulting output will be compiled by the C compiler resulting
in a corresponding object code file (a .o file).

The SAMeDL compiler operates within the context of an SDE library. The library maintains
dependency information and other data used by the compiler to perform separate compilation. In
addition, the SDE library acts as a repository for all interface files generated by the SAMeDL
compiler.

5.2 SAMeDL Compiler Invocation

The SAMeDL compiler is invoked with the command samedl. It accepts a series of options and
a single file name as input arguments. Option keywords are not case sensitive and may be
truncated as long as the resulting abbreviation is unambiguous.

Syntax

samedl [options) sourcefile

Options

-library pathname Operate in the SDE library pathname. If not
specified, will default to current working
directory

-list Generate an interleaved listing file

-syntax Check the syntax of the input file without
generating any output files.

samedl executes the SAMeDL compiler and compiles the named SAMeDL source file into the
SDE library directory specified by pathname; if pathname is not specified, then it will default to

Intermetrics, Inc. 23

SAMeDL Development Environment - User Manual

the current working directory. Note that the SDE library must already have been created (via the
sde.creatlib command). The SAMeDL source file name must end with the suffix .sme.

The listing option, when specified, directs the compiler to produce an interleaved listing file.
The listing file will be named <x>.lis where <x> is the base name of the input source file (for
example, a source file named xyz.sme will result in a listing file being named xyzlis). Compiler
diagnostic messages will always be written to standard output, regardless of whether or not -list
is in effect.

The syntax option, when specified, causes the SAMeDL compiler to act as a SAMeDL syntax
checker, generating error messages for syntax and some semantic errors, but no code.

The SAMeDL compiler will generate interface files for each definition module (an Ada package
specification/body pair) and each abstrict module (an Ada package specification/body pair, a C
with embedded SQL file, and an object code file). No interface files are generated for schema
modules. All interface files will be placed in the samedl.lib directory contained within the
library directory. For the naming conventions used for interface files, please refer to Section 3.3
in this manual.

As an example, take the following:

%samedl -lib /usr/same/example/samelib -list example.sme

This will compile the SAMeDL description file example.sme into the library
/usr/same/example/samelib and create an interleaved listing file named example.lis in the
current directory. All generated interface files will be placed in the directory
/usr/same/example/samelib/samedl.lib.

Before invoking the SAMeDL Compiler, users should be sure to check that SAMeDL packages
required via reference directives have already been compiled into the SAMeDL library. In
particular, a typical SAMeDL code file will include reference directives for the SAMeDL
definitional modules SAMeDL Standard and SAMeDL System, found in the files
$SDEPATH/STDPKGS/samedl-std.sme and $SDEPATH/STrDPKGS/samedl sys.sme.
These packages contain definitionsfor system limits and predefined base domains. Users who
tend to frequently use the predefined base domains should get into the habit of compiling these
files into their SAMeDL libraries at library creation time.

Before you can use the compiler however, you must properly set the environment variable
ORACLE HOME to contain the path name to the Oracle RDBMS installation directory (e.g.,
/usr/oracle).

5.3 Using the Compiler-Generated Interface

In order to use the SAMeDL compiler generated Ada/SQL interface, the target Ada application
must be linked with the SAMeDL generated Ada files and object code files, a set of SAMeDL
standard packages (see Section 3.5), a set of Oracle Libraries, and an Oracle object file.To
facilitate the final steps in building the Ada target application, SDE provides you with a Unix C-
shell script that contains Alsys Ada Compiler commands. This script can be found in the SDE
installation directory and used as an example of how to compile the SAMeDL Standard Packages
your application requires using the Alsys Ada Compiler. It is called compstdpkgs.

24 Intermetrics, Inc.

_ __ Chapter 5 - Building AdalSQL Interfaces With SAMeDL

The first step in compiling and linking your application is to make the SAMeDL standard
packages visible to your Alsys Ada application library. This can be done by using the
comp std pkgs script file found in the SDE installation directory. You may invoke the
comp-std3kgs by issuing the following command:

%comp std._pkgs libpath

where libpath is the pathname to the Ada library that the SAMeDL standard packages are to be
compiled into. This script will compile all of the SAMeDL standard packages into your Ada
library. This step needs to be performed once per library, unless the SAMeDL standard packages
have already been made visible to the Ada library in some other way.

Once the standard packages have been compiled into the Ada library, the SAMeDL-generated
Ada packages should be compiled into the library. The SDE command sde.mkscript can- be
used to generate a script file for performing this compilation. Refer to section 8.6 of this
document for instructions and examples.

After the SAMeDL interface code has been compiled into your library, you may use the Alsys
Compile command to compile your application into the library. Once this step has been
completed, you are ready to prepare for linking the Ada-Oracle executable.

There are five files which must be linked with your application in order to produce a valid
executable. Three of the files, namely $ORACLE HOME/rdbms/lib/libsqlnet.a,
$ORACLE HOME/rdbms/lib/libsql.a and $ORACCE HOME/lib/libora.a are Oracle
libraries. One of the files, $ORACLE HOME/rdbms/lib~osntab.o, is an Oracle object file.
And the fifth file is an archive of the pertnent C object code generated by the SAMeDL compiler
and stored in the SAMeDL library. This last file is created from the SAMeDL library
information using the command sde.creatar, described in section 8.3 of this document.

Your Ada application can be linked easily by following these simple instructions:

0 Generate the executable using the Alsys BIND command. When issuing the BIND
command, include the following arguments in addition to providing values for the
required PROGRAM and LIBRARY parameters [AdaRef]:

(a) MODULES => $ORACLEHOME/rdbms/lib/osntab.o

(b) SEARCH => the archive file generated by the call to sde.creatar (for this
example, c recdml.a),
$ORACLE HOME/rdbms/lib/iibsqlnet.a,
$ORACLE-HOME/rdbms/lib/libsql.a,
$ORACLE-HOME/rdbms/lib/libora.a

0 The order of arguments for the MODULES parameter is not significant, but the order of
arguments for the SEARCH parameter is significant. If your application program
requires additional extefnal modules, you may have to reorder the list of external
modules before all references can be adequately resolved. Consult the Alsys Ada
User's Manual for further information.

Intermetrics, Inc. 25

SAMeDL Development Environment - User Manual

5.4 Compiler Directives

Compiler directives are embedded in SAMeDL source files and are used to indicate special
directions to the compiler outside of the SAMeDL syntax and semantics. The general form of
any directive is:

-ldirectivename parameterlist

In order for a directive to be recognized, it is important that no white space (i.e., spaces, tabs,
etc.) appear between any of the dashes (-), the bang (!), and the directivename keyword.

Each directive will be given in its general form, followed by a definition of each term of the

directive, and a description of its use.

5.4.1 Reference Directive

The reference directive allows you flexibility of separate compilation by permitting visibility of
externally declared modules that have been previously compiled. This directive(s) must appear
immediately before the first context clause of a SAMeDL module.

The compiler processes the reference directive by reading the referenced module from the SDE
library currently in context and importing the appropriate symbol information for the referenced
module. Once a reference directive is used for a particular module, then any module appearing
textually after the reference directive may refer to the contents of the referenced module.

Typical use for the reference directive is to gain visibility to the SAMeDL packages
SAMeDLStandard and SAMeDL_System, which contain the definitional modules for the
predefined base domains and the system limits.

The form of the reference directive is as follows:

-treference modulename

The reference keyword must begin immediately following the ! and the entire word must be
included. The keyword is case-insensitive, module_name must reference the name of a
SAMeDL module that has been previously compiled into the SDE library.

Note: This directive must be placed before the context clauses of a module declaration; placing
it between the start of a module declaration and the corresponding END will cause a fatal error.
Also, this directive will not compile the referenced module. Any module that needs to be
compiled or re-compiled, needs to be done so separately.

As an example, assume the following definitional and schema modules have been previously
compiled.

DEFINITION MODULE Bank_Def IS
DOMAIN Customername_domain IS NEW SQLCHAR(length => 50);

END BankDef;

26 Intermetrics, Inc.

Chapter 5 - Building Ada/SQL Int1races With SAMeDL

WITH BankDef;
USE Bank_Def;
SCHEMA MODULE BankDB IS

END BankDB;

Then the following Abstract module would have full visibility to both modules using the
reference directive:

-- tReferoenceo bank_def
-- Reference bankdb
WITH Bank_Def;
USE Bank_Def;
ABSTRACT MODULE Bank_Actions IS

AUTHORIZATION BankDB

END Bankactions;

5.4.2 Owner Directive

The owner directive enables you to specify the Oracle owner of a particular set of database
tables. The owner directive must precede a schema module declaration and affects that schema
module in the following way: the owner-name specified in the directive is considered to be the
name of the Oracle owner of the database tables defined in the schema module. Each owner
directive applies only to the next schema module declaration in the SAMeDL source code. If no
owner is specified for a particular schema module, then the owner is assumed (by Oracle) to be
the user-name of the Oracle account which the application connected to via the SAMeDL
connect server command.

The format of the owner directive is as follows:

-lowner ownername

The keyword owner must begin immediately following the ! and the entire word must be
included. The keyword is case-insensitive.

Note: This directive M= be placed outside of any module declaration; placing it between the
start of a module declaration and the corresponding END will cause a fatal error. The most
logical place to put the directive is directly before a schema module declaration, as shown below.

As an example, use of the Owner Directive, as exhibited below, would cause the resulting Ada-
Oracle application to access the table myuserid.Cust, owned by user myuserid:

-- lOwner myuserid

Intermetrics, Inc. 27

SAMeDL Development Environment - User Manual

WITH Bank_Def;
USE BankDef;
SCHEMA MODULE BankDB IS

TABLE Cust IS -- Basic customer information
Name Customernamedomain,
SSN SSNbdomain,
Street_addr Addr_domain,
City-addr Addr_domain,
State_addr State_domain

END Cust;
END BankDB;

WITH BankDef;
USE BankDef;
ABSTRACT MODULE BankActions IS

AUTHORIZATION BankDB

PROCEDURE Getcustomerprofile (SSN_IN SSN_domain) IS
SELECT *

INTO Customer-profile : customer_record
FROM BankDB.Cust
WHERE SSN = SSN_in;

END Bankactions;

Note: Successful use of the Owner Directive requires that the resulting Ada-DBMS application
be run from an account which has been granted the appropriate privileges for all referenced
tables. Refer to the Oracle user's guides [Oracle] for more information on privileges and
owners.

28 Intermetrics, Inc.

Chapter 6 - Implementation Dependent Features

Chapter 6 Implementation Dependent Features
This chapter describes SAMeDL features which are dependent on the Oracle implementation.
Section 6.1 describes features which are included as part of the SAMeDL language ([LRM]) but
not supported due to limitations imposed by Oracle. Section 6.2 details features which are not
included as part of the SAMeDL but are provided as extensions for the implementation either
because of necessity or convenience. Finally, Section 6.3 includes some solutions to system
errors that are commonly encountered.

6.1 SAMeDL Language Limitations Under Oracle

Because of limitations imposed by Oracle, use of the following features described in the
SAMeDL Language Reference Manual ([LRM]) will produce errors (all references below are
made with respect to [LRMJ):

1. WHERE Clauses - The SAMeDL language, in accordance with the ANSI SQL
Standard, allows input references to be part of value expressions, regardless of whether
or not the input reference is to a null-bearing parameter. However, Oracle does not
allow null-bepxing input references to be part of where clauses. The SAMeDL compiler
will issue an error if a null-bearing parameter is used in a place where Oracle does not
allow it.

6.2 SAMeDL Extensions For Oracle

This section details features which are included as part of SAMeDL as implementation-specific
extensions either because of necessity or convenience. They include the following statements:

Connect Server Statement

The connect server statement is an extended statement. It's grammar consists of the following
productions:

connectserverstatement connect server userid password
[using database-name 1;

userid input_paramref I
characterliteral I
constantreference

password ::= inputparamref I
character_literal I
constantreference

databasename input_param_ref I
character literal I
constant-reference

The Connect Server Statement connects the application to the Oracle server named
database_name as the user named by userid with the password given by password. The input
parameters representing the user id, password, and database name must have been declared with
a SAMeDL domain whose DBMS-type is character. If the using clause is not specified, then

Intermetrics, Inc. 29

SAMeDL Development Environment - User Manual

database_name will default to the user's default table space (see Appendix D, [OracleESQL]).
All subsequent transactions are performed on the connected database. No data access can be
performed until the application has successfully connected to the server.

Because the Connect Server statement is an extended statement, its containing procedure and
abstract module must be marked as extended.

Definitional Module Bodies

The SAMeDL Compiler generates a package body for each definitional module. This practice
differs from the recommendation of the SAMeDL LRM, but is maintained in order to decrease
code size and functional redundancy.

The package body for each definitional module is empty unless the definitional module contains
a domain declaration of data class enumeration possessing a user-defined database mapping as a
value for the predefined parameter MAP. For each declaration of this type, a function to perform
conversion from the domain type to the underlying database type is provided. A function to
convert from the database type to the domain type is also provided. Without these globally
accessible functions, a large amount of code would have to be reproduced frequently in the
Abstract Module's package body in order to perform data conversions.

These functions can be accessed by the SAMeDL application, but are primarily designed for use
by the SAMeDL compiler back-end to generate package bodies for Abstract Modules.

6.3 Troubleshooting Common System Errors

The following list includes some helpful techniques for configuring the SAMeDL environment
that will reduce your chances of getting some common system errors.

1. Increase the MAXUMEM Interactive Unix kernel parameter - If you get an Oracle
error message when running your application that indicates that your application
process does not have enough memory available to run successfully, then you should
increase the MAXUMEM kernel parameter. Consult your Unix system administrator
for instructions.

2. Increase the Interactive Unix ULIMIT kernel parameter - If you get an Alsys error
message during the LISTING phase of compiling your application, then you might try
raising the ULIMIT kernel parameter to increase the file size limit. Consult your Unix
system administrator for instructions.

30 Intermetrics, Inc.

Chapter 7 - Tool Limitations

Chapter 7 Tool Limitations
This chapter lists limitations of SDE.

7.1 SAMeDL Compiler Limitations

The following limitations are imposed by the SAMeDL compiler:

* The maximum number of characters allowed in a source line is 255.

• The compiler will not delete any files from an SDE library; the sde.purge command
must be used to clean the library of any out of date or temporary files.

0 The maximum length of an Error Message that can be printed by the
Process_Database_Error routine is 132 characters.

* If extremely long names are used in the SAMeDL source code, it is possible that the
compiler could attempt to generate output with lines that exceed the Unix line length
limit. The SAMeDL compiler will issue a warning if excessive name length results in
an output problem.

* The value range for types Smallint and IndicatorType is -32768.. 32767.

* The value range for types Int and SqlcodeType is -2147483648 .. 2147483647.

0 The value range for type Real is the range for Alsys' LONGFLOAT type.

In addition, because Ada source is generated by the SAMeDL compiler, all restrictions and
semantics as outlined in [Ada] and [AdaRefi must be followed. Although these limits are not
explicitly checked by the SAMeDL compiler, they do indirectly affect the structure of what
normally would be legal SAMeDL code.

7.2 SDE Module Manager Limitations

The following limitations are imposed by the SDE Module Manager:

1. The SDE commands (with the exception of sde.purge) will not delete any files from an
SDE library; the sde.purge command must be used to clean the library of any out of
date or temporary files.

2. After executing the sde.purge command, you may not restore the library to its prior
state.

Intermetrics, Inc. 31

Chapter 8 - SDE Command Reference Manual Pages

Chapter 8 SDE Command Reference Manual Pages
This chapter contains a reference guide for each of the commands in SDE. The commands
available to you are:

samedl invoke the SAMeDL compiler
sde.cleanlib reinitialize an SDE library
sde.creatar create a library archive file for compiled concrete modules
sde.creatlib create an SDE library
sde.Is list compiled SAMeDL modules
sde.mkscript generate an Ada compilation script file for an interface file
sde.purge remove out of date files from an SDE library
sde.rm remove a SAMeDL module from an SDE library
sde.rmilib remove an SDE library

Intermetrics, Inc. 33

SAMeDL Development Environment - User Manual

8.1 samedl

Command

samedl - invoke the SAMeDL compiler

Syntax

samedl [options] source_file

Options

-library pathname Operate in the SDE library pathname. If not
specified, will default to current working
directory

-list Generate an interleaved listing file

-syntax Check the syntax of the input file without
generating any output files.

Description

samedl executes the SAMeDL compiler and compiles the named SAMeDL source file into the
SDE library directory specified by pathname; if pathname is not specified, then it will default to
the current working directory. The SAMeDL source file name must end with the suffix sine.

The listing option, when specified, directs the compiler to produce an interleaved listing file.
The listing file will be named <x>.lis where <x> is the base name of the input source file (for
example, a source file named xyzsme will result in a listing file being named xyz.lis). Compiler
diagnostic messages will always be written to standard output, regardless of whether or not -list
is in effect.

The SAMeDL compiler will generate interface files for each definition module (in the form of an
Ada package specification/body pair) and each abstract module (in the form of a layered
interface consisting of an Ada package specification/body pair and an object code file generated
from a C with embedded SQL file). No interface files are generated for schema modules. All
interface files will be placed in the SAMeDL library contained within the library directory.

Before using the compiler, the environment variable ORACLE HOME must be properly set to
contain the path name to the ORACLE RDBMS installation directory (e.g., Iusr/orade).

34 Intermetrics, Inc.

Chapter 8 - SDE Command•Reference Manual Pages

Module Type File Name Description

Definitional Module D-xxxxx.sme Text file containing SAMeDL source code
representing the definitional module

P_xxxxx_.a Generated Ada package specification file

B_xxxxx.a Generated Ada package body file

Schema Module Sxxxxx.sme Text file containing SAMeDL source code
representing the schema module

Abstract Module Axxxxx.sme Text file containing SAMeDL source code
representing the abstract module

P_xxxxx_.a Generated Ada package specification file

B_xxxxx.a Generated Ada package body file

E xxxxx.ec Generated C w/ embedded SQL (C/ESQL)
file

E_xxxxx.o Object code for the expanded/compiled
C/ESQL file

where xxxxx denotes a unique integer.

Diagnostics

The diagnostics produced by the SAMeDL compiler are intended to be self-explanatory.

Intermetrics, Inc. 35

SAMeDL Development Environment - User Manual

8.2 sde.cleanlib

Command

sde.deanlib - reinitialize a SDE library

Syntax

sde.cleanlib [pathname]

Description

sde.cleanlib will empty an existing SDE library of all compilation information. The command
will re-initialize the names.dbe and samedl.dat files and remove the remaining contents of the
samedl.Iib directory from the directory specified by pathname; if pathname is not specified, then
it will default to the current working directory.

Examples

The following sequence of commands cleans and re-initializes the library contained in the
directory /home/samedl.

%cd /home/samedl
%sde.cleanlib

The following command does the same.thing:

%sde.cleanlib /home/samedl

Diagnostics

An error is reported and no action is taken if pathname does not specify a valid, unlocked SDE
library.

36 Intermemrics, Inc.

Chapter 8- SDE Command Reference Manual Pages

8.3 sde.creatar

Command

sde.creatar - create a library archive file for compiled concrete modules

Syntax

sde.creatar [options] archive name module-name ...

Options

-library pathname Operate in the SDE library pathname. If not
specified, will default to current working
directory

Description

For each SAMeDL abstract module specified by module name, sde.creatar will add (or
replace) the object code file representing the related concrete module into the library archive file
denoted by archive name. The library archive file may already exist, or in the event that it does
not exist, a new one will be created. sde.creatnr is analogous to the following UNIX command:

%ar r archive_name c_module_namel.o

See ar(l) in the UNIX Programmer's Manual.

Examples

The following example adds the concrete modules associated with the SAMeDL abstract
modules absl and abs2 (assume they are E .o and E 2.o respectively) from the library
/usr/home/jdoe/my jib to the archive file my archive in the current working directory.

%sde.creatar -lib /usr/home/jdoe/my_1ib mryarchive absl abs2

Assuming that my_archive was* previously empty or did not exist, then issuing the UNIX
command ar with the table of contents (t) option will yield the following results:

%ar t ./myarchive
E_1.o
E_2 .o

Diagnostics

An error is reported and no action is taken if module name is not an abstract module or does not
exist in the library, or if the library is not valid or is locked.

Intermetrics, Inc. 37

SAMeDL Development Environment - User Manual

8.4 sde.creatlib

Command

sde.creatlib - create an SDE library

Syntax

sde.creatlib [pathname]

Description

sde.creatlib creates and initializes a new SDE library. It creates a directory named samedl.lib
for the library in the directory specified by pathname. If pathnane is not given, the current
working directory is the default.

The command creates the files samedl.dat and names.dbe in the samedl.lib directory and sets
the their information fields to an initial state.

Examples

The following sequence of commands creates a new SDE module manager library in the
directory /home/samedl.

%cd /home/samedl
%sde. creatlib

The following command does the same thing:

%sde. creatlib /home/samedl

Diagnostics

An error is generated and no action is taken if pathname is not an existing directory or if the
directory already contains an SDE library.

38 Intermetrics, Inc.

Chapter 8 - SDE Command Reference Manual Pages

8.5

Command

sde.ls - list compiled SAMeDL modules

Syntax

sde.ls [options] [module_name] ...

Options

-ada.only List only generated Ada interface files

-interface List all generated interface files

-library pathname Operate in the SDE library pathname. If not
specified, will default to current working
directory

-verbose List file, file type, library entry date, source file
name, and library file name.

Description

sde.ls provides a list of the SAMeDL modules compiled in the specified SDE library denoted by
pathname (or the current working directory if pathname is not given). Options are provided to
give more or less extensive information.

Specifying one or more module names gives information only on those modules; otherwise
information for all modules in the library will be listed.

The options -ada only and -interface are mutually exclusive. If both are specified, then -
interface will be in effect.

Examples

The following command lists all (verbose) information for the modules absl and abs2 and their
generated interface files from the library in the current working directory.

%sde.ls -v -i absl abs2

absl
Unit Kind: ABSMODULE
Source File: absl.sme
Library File: ./samedl.lib/A_l.sme
Time Entered: Feb 24 1992 11:59
Interface Files:

./samedl.lib/P_2_.a (ADASPEC)

./samedl.lib/B_2.a (ADABODY)

./samedl.lib/E_l.ec (EMBEDDEDC)

./samedl.lib/E_l.o (OBJECTFILE)

Intermetrics. Inc. 39

SAMeDL Development Environment - User Manual

abs2
Unit Kind: ABSMODULE
Source File: abs2.sme
Library File: ./samedl lib/A_2.sme
Time Entered: Feb 24 1992 12:00
Interface Files:

./samedl.lib/P_3_.a (ADASPEC)

./samedl.lib/B_3 .a (ADABODY)

./samedl.lib/E_2..ec (EMBEDDEDC)

./samedl. lib/E_2.o (OBJECTFILE)

Diagnostics

An error is reported and no action is taken if module_name does not exist in the library, or if the
library is not valid or is locked.

40 intermetr'cs, Inc.

Chapter 8 - SDE Command Reference Manual Pages

8.6 sde.mkscript

Command

sde.mkscript - generate an Ada compilation script file for an interface file

Syntax

sde.mkscript [options] modulename ...

Options

-library pathname Operate in the SDE library pathname. If not
specified, will default to current working
directory

-output filename Place the generated script template into filename

Description

sde.mkscript will create a template for performing the Ada compilation of the generated. Ada
files (and the units they depend on) for the definitional or abstract module(s) specified.

Examples

Suppose in the library /usr/home/jdoe/myjlib you have compiled the abstract module my abs
which depends (WITHs) the schema module my sch and the definitional module my def;
mysch depends only on my def and my def depends on no modules. Performing an sde.ls
command gives the following reformation:

%sde.ls -v -a -1 /usr/home/jdoe/my-lib my-abs mydef my-sch

my-abs
Unit Kind: ABSMODULE
Source File: input.bme
Library File: /usr/home/jdoe/my-lib/samedl. lib/A l.sme
Time Entered: Feb 24 1992 11:59
Interface Files:

/usr/home/jdoe/my-lib/samedl. lib/P_.2_.a (ADASPEC)
/usr/home/jdoe/my_lib/samedl. lib/B_2.a (ADABODY)

my-de f
Unit Kind: DEFMODULE
Source File: input.sme
Library File: /usr/home/jdoe/my-lib/samedl.lib/D_ .sme
Time Entered: Feb 24 1992 11:59
Interface Files:

/usr/home/jdoe/mylib/samedl. lib/P_1_.a (ADASPEC)
/usr/home/jdoe/mylib/samedl. lib/B_l.a (ADABODY)

Intermetrics, Inc. 41

SAMeDL Development Environment - User Manual

my-sch
Unit Kind: SCHEMAMODULE
Source File: input.sme
Library File: /usr/home/jdoe/my-lib/samedl.lib/S1,.sme
Time Entered: Feb 24 1992 11:59

You may issue a sde.mkscript command to generate an Ada compilation template for compiling
the Ada interface files associated with myabs as follows:

%sde.mkscript -1 /usr/home/jdoe/my-lib -o my-script myabs
%more myscript
Compile (Source => "/usr/same/example/samelib/samedl.lib/P_1_.aa);
Compile (Source => "/usr/same/example/samelib/samedl.lib/Bl.a°);
Compile (Source => •/usr/same/example/samelib/samedl.lib/P_2_.a');
Compile (Source => "/usr/same/example/samelib/samedl.lib/B_2.a*);
Compile (Source => 0/usr/same/example/samelib/samedl.lib/P_.3_.a.);
Compile (Source => 1/usr/same/example/samelib/samedl.lib/B_3 .aw);

Diagnostics

An error is reported and no action is taken if modulename is not an abstract or definitional
module or does not exist in the library, or if the library is not valid or is locked.

42 Intermetrics, Inc.

Chapter 8 - SDE Command Reference Manual Pages

8.7 sde.purge

Command

sde.purge - remove out of date/unused files from an SDE library

Syntax

sde.purge [pathname]

Description

sde.purge will empty an existing SDE library of all obsolete or unused files. The command will
remove all out of date (due to recompilation for example) or unused files (compiler temporary
files or files associated with modules that have been removed via sde.rm) along with the library
state backup file samedl.daLback in the samedl.Iib directory from the library associated with
pathname, if pathname is not specified, then the SDE library will default to the curet working
directory.

Note that, because sde.purge removes the library state backup file samedl.dat.back, an SDE
library may not be restored back to its prior state once a purge is performed. Normally, library
restoration would be accomplished by renaming the samedl.daLback file to samedl.dat in the
samedl.lib directory for the library. For example:

%cd pathname/samedl .lib

%1s samedl.dat*
samedl .dat samedl .dat.back
%rm samedl.dat
%mv samedl.dat.back samedl.dat

Examples

The following sequence of commands purges the library contained in the directory
/home/samedl.

%cd /home/samedl
%sde. purge

The following command does the same thing:

%sde .purge /home/samedl

Diagnostics

An error is reported and no action is taken if pathname does not specify a valid, unlocked SDE
library.

Intermetrics, Inc. 43

SAMeDL Development Environment - User Manual

8.8 sde.rm

Command

sde.rm - remove a SAMeDL module from a library

Syntax

sde.rm [options] modulename ...

Options

-force Suppress the confirmation prompt and force
deletion

-library pathname Operate in the SDE library pathname. If not
specified, will default to current working
directory

Description

sde.rm removes all information and related interface files associated with the named module(s).

Unless the -force option is specified, the user will be issued a confirmation prompt for each
module to be removed. The user may respond with a y (or Y) if the module should be deleted;
any other response will result in the module being retained.

Examples

The following sequence of commands removes the unit abstract-mod from the SDE library
present in the directory /home/samedl.

%cd /home/samedl
%sde.rm abstract_mod

sde.rm: Delete ABSMODULE abstractmod? (N]: y

The following command does the same thing but eliminates the confirmation prompt:

%sde.rm -1 /home/samedl -f abstractmod

Diagnostics

An error is reported and no action is taken if module_name does not exist in the library, or if the
library is not valid or is locked.

44 Intermetrics, Inc.

Chapter 8 - SDE Command Reference Manual Pages

8.9 sde.rmlib

Command

sde.rmlib - remove an SDE library

Syntax

sde.rmlib [pathname]

Description

sde.rmlib removes all information in the SDE library in the directory specified by pathname
(the current directory is the default). It deletes all the files in the SDE library directory
samedl.lib, and then removes the directory.

The user will be issued a confirmation prompt. The user may respond with a y (or Y) if the
library should be deleted; any other response will abort the command and retain the library
unchanged.

Examples

The following sequence of commands removes the SDE library present in the directory
/home/samedl.

%cd /home/samedl
%sde.rmlib

sde.rmlib: Delete ./samedl.lib? [N]: y

The following command does the same thing:

%sde.rmlib /home/samedl

sde.rmlib: Delete /home/samedl/samedl.lib? (N]: y

Diagnostics

An error is reported and no action is taken if the library is not valid or is locked.

Intermetrics, Inc. 45

Index

samedl.dat 6, 8
Index samedl.datback 6,9

samedl.lib 7, 10, 11, 24
samedl.lock 10-11
samTedl.tnp 11
SDE library 5, 6, 7-11, 13, 23Ada application program 16-22, 24-25 sde.cleanlib 6, 8, 36

Ada package file 5, 6, 16, 23, 24 sde.creatar 6, 17, 37
sde.creatlib 6, 8, 13, 24, 38

C sde.ls 6, 16, 39-40
C file 11 sde.mkscript 6, 17, 41-42
C/ESQL file 5, 6, 11, 16, 23, 24 sde.purge 6, 31, 43
Corn file 11 sde.rm 6, 44
Common errors 30 sde.rmlib 45
Compiler directive 26-28 Separate compilation 5, 23, 26-27
Connect server statement 29-30 Syntax conventions 2
Context clause 5
Creating a database 13 T
Creating an SDE library 6, 8, 13-14, 24, 38 Tool limitations 31

D
Database connection 15, 29
Document references 2-3

I
Implementation dependent features 29-30
Interface files 5, 6, 10, 16, 23, 24

L
Language limitations 29
Library locking 10-11

M
Module 5, 10
Module manager 6

N
names.dbe 6, 9

0
Object code file 5, 6, 11, 16, 23, 24
ORACLEHOME 14,24
Owner directive 27-28

R
Reference directive 26-27
Restoring an SDE library 9, 31, 43

S
SAMeDL compiler 5, 14-16, 23-28, 34-35
SAMeDL extensions 29-30
SAMeDL standard packages 11, 16

Intermetrics, Inc. 47

